

The most functional city in the world - despite weather and climate change

Main results of weather and climate change risk assessment

Climate change in Helsinki by 2050

\bigcirc

Temperature

- Helsinki will become warmer in all
- seasons, more in winter than in summer.
- In winter, extremely low temperatures will become less frequent and temperature variation will decrease.
- The highest summer temperatures will increase at the same rate as the mean temperature does.

~	\sim	\sim	1
	-	-	
~	\sim	\sim	1
	-	-	
-	\sim	\sim	-
	-	-	

Sea

- The sea level will rise in the Gulf of Finland of the Baltic Sea.
- Sea ice will become thinner on average and its extent will diminish.

Precipitation

- In winter, precipitation (both mean and maximum) increases substantially and there will be more rainy days.
- In summer, the mean precipitation will remain largely unchanged, while heavy precipitation events will intensify.

Wind

- On average, wind speed will remain largely unchanged.
- Uncertainty exists about the direction of change of the strongest winds.

Main weather and climate risks in Helsinki by 2050

Flooding

The risk of urban and sea flooding will increase - economic impacts may be significant.

Traffic and slipping injuries

The risk of injuries will increase in winter - road maintenance costs and injury compensations are likely to rise.

Heat-related health problems

Heat-related health risks will increase the well-being of the vulnerable groups must be looked after.

Tick-borne diseases

Tick-borne diseases, e.g. Lyme disease (borreliosis) will become more common - human behaviour is a decisive factor.

Biodiversity

Biodiversity is threatened by several factors - combatting invasive alien species creates significant costs.

The cross-border impacts

The cross-border impacts of climate change will reach Helsinki - security of supply must be paid attention to.

Storm impacts

The risk of damages caused by strong winds and thunderstorms will not change significantly - it is still important to prepare for them.

The risk of climate change must be considered in all decision making of the city – improved weather and climate risk management requires knowledge and adaptation measures.

Societal exposure and vulnerability factors increasing the risks

- Urbanisation increases flood risk.
- The increasing utilisation of home care services for the elderly can, in turn, increase heat stress and mortality risk.
- Insufficient resources for anti-slip measures increases accident risk.
- The lack of preparedness among urban citizens increases accident and fatality risk.
- **The outsourcing of services** can lead to lack of control which increases the need for monitoring.

Photo: Antonin Halas/Studio Halas

Key measures for climate risk management

- Incorporation of urban green in land use planning should be encouraged to reduce urban flood risk.
- Road maintenance and anti-slip measures for bicycle and pedestrian routes should be efficiently organized and resourced in winter.
- Procedures used during heatwaves should be developed, especially for elderly care services.
- Risks associated with the cross-border impacts should be investigated.
- Citizens' preparedness level for urban risks should be increased through improved communication.
- Weather and climate risk management should be integrated at all levels of decision making.

Helsinki, the capital city of Finland

- Total area: 719 km², of which land 217 km²
- Shoreland (mainland): 123 km
- Islands: 315
- Population (2017): 635 000
- Population density: 2 934 inhabitants per km² land

Climate in Helsinki (Kaisaniemi) in 1981–2010:

- Annual mean air temperature 5.9 °C:
 - Max 30.8 °C, min −34.3 °C
 - The warmest month: July, mean temp.17.8 °C
 - The coldest month: February, mean temp. -4.7 °C
- Annual total precipitation 655 mm
 - Daily maximum 79.3 mm

References:

Pilli-Sihvola, K. et al. 2018. Sään ja ilmastonmuutoksen aiheuttamat riskit Helsingissä. Helsingin kaupunginympäristön julkaisuja 2018:6. 92 s.

Pirinen, P. et al. 2012. Climatological statistics of Finland 1981–2010. Finnish Meteorological Institute. 83 p. **Project coordinators in the City of Helsinki:** Jari Viinanen & Sonja-Maria Ignatius, firstname.lastname@hel.fi **Project coordinator at the Finnish Meteorological Institute (FMI):** Karoliina Pilli-Sihvola, firstname.lastname@fmi **Communication expert:** Sanna Luhtala, Finnish Meteorological Institute

